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Abstract

Learning to localize objects with minimal super-
vision is an important problem in computer vi-
sion, since large fully annotated datasets are ex-
tremely costly to obtain. In this paper, we pro-
pose a new method that achieves this goal with
only image-level labels of whether the objects
are present or not. Our approach combines a dis-
criminative submodular cover problem for auto-
matically discovering a set of positive object win-
dows with a smoothed latent SVM formulation.
The latter allows us to leverage efficient quasi-
Newton optimization techniques. Our experi-
ments demonstrate that the proposed approach
provides a 50% relative improvement in mean
average precision over the current state-of-the-art
on PASCAL VOC 2007 detection.

1. Introduction

The classical paradigm for learning object detection mod-
els starts by annotating each object instance, in all training
images, with a bounding box. However, this exhaustive
labeling approach is costly and error prone for large-scale
datasets. The massive amount of textually annotated visual
data available online inspires a different, more challenging,
research problem. Can weakly-labeled imagery, without
bounding boxes, be used to reliably train object detectors?

In this alternative paradigm, the goal is to learn to localize
objects with minimal supervision (Weber et al., 2000a;b).
We focus on the case where the learner has access to bi-
nary image labels that encode whether an image contains
the target object or not, without access to any instance level
annotations (i.e., bounding boxes).

Our approach starts by reducing the set of possible image
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locations that contain the object of interest from millions
to thousands per image, using the selective search window
proposal technique introduced by Uijlings et al. (2013).
Then, we formulate a discriminative submodular cover al-
gorithm to discover an initial set of image windows that are
likely to contain the target object. After training a detec-
tion model with this initial set, we refine the detector us-
ing a novel smoothed formulation of latent SVM (Andrews
et al., 2003; Felzenszwalb et al., 2010). We employ re-
cently introduced object detection features, based on deep
convolutional neural networks (Donahue et al., 2014; Gir-
shick et al., 2014), to represent the window proposals for
clustering and detector training.

Compared to prior work on weakly-supervised detector
training, we show substantial improvements on the stan-
dard evaluation metric (detection average precision on
PASCAL VOC). Quantitatively, our approach achieves a
50% relative improvement in mean average precision over
the current state-of-the-art for weakly-supervised learning.

2. Related work

Our work is related to three active research areas: (1)
weakly-supervised learning, (2) unsupervised discovery of
mid-level visual elements, and (3) co-segmentation.

We build on a number of previous approaches for training
object detectors from weakly-labeled data. In nearly all
cases, the task is formulated as a multiple instance learning
(MIL) problem (Long & Tan, 1996). In this formulation,
the learner has access to an image-level label indicating the
presence or absence of the target class, but not its location
(if it is present). The challenge faced by the learner is to
find the sliver of signal present in the positive images, but
absent from the negative images. The implicit assumption
is that this signal will correspond to the positive class.

Although there have been recent works on convex relax-
ations (Li et al., 2013; Joulin & Bach, 2012), most MIL al-
gorithms start from an initialization and then perform some
form of local optimization. Early efforts, such as (Weber
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etal., 2000a;b; Galleguillos et al., 2008; Fergus et al., 2007;
Crandall & Huttenlocher, 2006; Chum & Zisserman, 2007;
Chen et al., 2013), focused on datasets with strong object-
in-the-center biases (e.g. Caltech-101). This simplified set-
ting enabled clarity and focus on the MIL formulation, im-
age features, and classifier design, but masked the vexing
problem of finding a good initialization in data where such
helpful biases are absent.

More recent work, such as (Siva & Xiang, 2011; Siva et al.,
2012), attempts to learn detectors, or simply automatically
generate bounding box annotations from much more chal-
lenging datasets such as PASCAL VOC (Everingham et al.,
2010). In this data regime, focusing on initialization is
crucial and carefully designed heuristics, such as shrink-
ing bounding boxes (Russakovsky et al., 2012), are often
employed.

Recent literature on unsupervised mid-level visual element
discovery (Doersch et al., 2012; Singh et al., 2012; Endres
et al., 2013; Juneja et al., 2013; Raptis et al., 2012) uses
weak labels to discover visual elements that occur com-
monly in positive images but not in negative images. Dis-
covered visual element representation were shown to suc-
cessfully provide discriminative information in classifying
images into scene types. The most recent work (Doersch
et al., 2013) presents a discriminative mode seeking formu-
lation and draws connections between discovery and mean-
shift algorithms (Fukunaga & Hostetler, 1975).

The problem of finding common structure is related to the
challenging setting of co-segmentation (Rother et al., 2006;
Joulin et al., 2010; Alexe et al., 2010), which is the unsuper-
vised segmentation of an object that is present in multiple
images. While in this paper we do not address pixel-level
segmentation, we employ ideas from co-segmentation: the
intuition behind our submodular cover framework in Sec-
tion 4 is shared with CoSand (Kim et al., 2011). Finally,
submodular covering ideas have recently been applied to
(active) filtering of hypothesis after running a detector,
and without the discriminative flavor we propose (Barinova
et al., 2012; Chen et al., 2014).

3. Problem formulation

Our goal is to learn a detector for a visual category from
a set of images, each with a binary label. We model an
image as a set of overlapping rectangular windows and fol-
low a standard approach to detection: reduce the problem
of detection to the problem of binary classification of im-
age windows. However, at training time we are only given
image-level labels, which leads to a classic multiple in-
stance learning (MIL) problem. We can think of each im-
age as a “bag” of instances (rectangular windows) and the
binary image label y = 1 specifies that the bag contains at

least one instance of the target category. The label y = —1
specifies that the image contains no instances of the cate-
gory. During training, no instance labels are available.

MIL problems are typically solved (locally) by finding a
local minimum of a non-convex objective function, such as
MI-SVM (Andrews et al., 2003). In practice, the quality
of the local solution depends heavily on the quality of the
initialization. We therefore focus extensively on finding a
good initialization. In Section 4, we develop an initializa-
tion method by formulating a discriminative set multicover
problem that can be solved approximately with a greedy
algorithm. This initialization, without further MIL refine-
ment, already produces good object detectors, validating
our approach. However, we can further improve these
detectors by optimizing the MIL objective. We explore
two alternative MIL objectives in Section 5. The first is
the standard Latent SVM (equivalently MI-SVM) objective
function, which can be optimized by coordinate descent on
an auxiliary objective that upper-bounds the LSVM objec-
tive. The second method is a novel technique that smoothes
the Latent SVM objective and can be solved more directly
with unconstrained smooth optimization techniques, such
as L-BFGS (Nocedal & Wright, 1999). Our experimen-
tal results show modest improvements from our smoothed
LSVM formulation on a variety of MIL datasets.

4. Finding objects via submodular cover

Learning with LSVM is a chicken and egg problem: The
model weights are needed to infer latent annotations, but
the latent annotations are needed to estimate the model
weights. To initialize this process, we approximately iden-
tifying jointly present objects in a weakly supervised man-
ner. The experiments show a significant effect from this
initialization. Our procedure implements two essential as-
sumptions: (i) the correct boxes are similar, in an appropri-
ate feature space, across positive images (or there are few
modes), and (ii) the correct boxes do not occur in the neg-
ative images. In short, in the similarity graph of all boxes
we seek dense subgraphs that only span the positive im-
ages. Finding such subgraphs is a nontrivial combinatorial
optimization problem.

The problem of finding and encoding a jointly present sig-
nal in images is an old one, and has been addressed by clus-
tering, minimum description length priors, and the concept
of exemplar (Darrell et al., 1990; Leibe et al., 2004; Mico-
lajczyk et al., 2006; Kim et al., 2011). These approaches
share the idea that a small number of exemplars or clusters
should well encode the shared information we are inter-
ested in. We formalize this intuition as a flexible submod-
ular cover problem. However, we also have label informa-
tion at hand that can help identify correct boxes. We there-
fore integrate into our covering framework the relevance
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Figure 1. Illustration of the graph G with V (top row) and U/ (bot-
tom row). Each box b € V is connected to its closest neighbors
from positive images (one from each image). Non-discriminative
boxes occur in all images equally, and may not even have any
boxes from positive images among their closest neighbors — and
consequently no connections to /. Picking the green-framed box
vin V “covers” its (green) highlighted neighbors I'(b).

for positively versus negatively labeled images, generaliz-
ing ideas from (Doersch et al., 2012). This combination
allows us to find multiple modes of the object appearance
distribution.

Let P be the set of all positive images. Each image con-
tains a set By = {b1, ..., by, } of candidate bounding boxes
generated from selective search region proposals (Uijlings
et al., 2013). In practice, there are about 2000 region pro-
posal boxes per image and about 5000 training images in
the PASCAL VOC dataset. Ultimately, we will define a
function F'(.S) on sets S of boxes that measures how well
the set S represents P. For each box b, we find its nearest
neighbor box in each (positive and negative) image. We
sort the set A/ (b) of all such neighbors of b in increasing
order by their distance to b. This can be done in parallel.
We will define a graph using these nearest neighbors that
allows us to optimize for a small set of boxes S that are (i)
relevant (occur in many positive images); (ii) discrimina-
tive (dissimilar to the boxes in the negative images); and
(iii) complementary (capture multiple modes).

We construct a bipartite graph G = (V,U, £) whose nodes
V and U are all boxes occurring in P (each b occurs once
in V and once in /). The nodes in U/ are partitioned into
groups Br: B contains all boxes from image I € P. The
edges £ are formed by connecting each node (box) b € V
to its top k neighbors in A/(b) C U from positive images.
Figure 1 illustrates the graph. Connecting only to the top
k neighbors (instead of all) implements discriminativeness:
the neighbors must compete. If b occurs in positively and
negatively labeled images equally, then many top-k clos-
est neighbors in A/(b) stem from negative images. Conse-
quently, b will not be connected to many nodes (boxes from
P) in G. We denote the neighborhood of a set of nodes
SCVbyI'(S)={bel|3(v,b) € Ewithv € S}.

Let S C V denote a set of selected boxes. We define a

covering score covry . (S) for each I that is determined by
a covering threshold t and a scalar, nondecreasing concave
functiong : Ry — R,

covy(S) = g(min{¢, |T(S) N Br]}). (1)

This score measures how many boxes in 3; are neighbors
of S and thus “covered”. We gain from covering up to ¢
boxes from B; — anything beyond that is considered redun-
dant. The total covering score of aset S C V is then

PE)=2 e

The threshold ¢ balances relevance and complementarity:
let, for simplicity, g = id. If ¢ = 1, then a set that max-
imizes covy .(S) contains boxes from many different im-
ages, and few from a single image. The selected neighbor-
hoods are very complementary, but some of them may not
be very relevant and cover outliers. If ¢ is large, then any
additionally covered box yields a gain, and the best boxes
b € V are those with the largest degree. A box has large
degree if many of its closest neighbors in A (b) are from
positive images. This also means b is discriminative and
relevant for P.

Lemma 1. The function F : 2V — R, defined in Equa-
tion (2) is nondecreasing and submodular.

covy . (S). 2)

A set function is submodular if it satisfies diminishing
marginal returns: for all v and S C T C V \ {v}, it holds
that F(S U {v}) — F(S) > F(T U{v}) — F(T).

Proof. First, the function S — |I'(S) N By| is a covering
function and thus submodular: let S C T C V \ b. Then
I'(S) C I'(T) and therefore

DT U{b})| = [D(T)| = [T(B) \ T(T)] (3)

< [T \T(S)] )

=[DSU{bH =TS 5

The same holds when intersecting with ;.  Thus,
covy 1(S) is a nondecreasing concave function of a sub-
modular function and therefore submodular. Finally, F'is a

sum of submodular functions and hence also submodular.
Monotonicity is obvious. O

We aim to select a representative subset .S C ) with mini-
mum cardinality:

glgl% [S] st F(S)>aF(V) (6)

for « € (0, 1]. We optimize this via a greedy algorithm: let
So = ) and, in each step 7, add the node v that maximizes
the marginal gain F'(S; U {v}) — F(S;).

Lemma 2. The greedy algorithm solves Problem (6) within
an approximation factor of 1 + log (g(tfj%)
O(log k).
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Lemma 2 says that the algorithm returns a set S with
F(S) > aF (V) and |S| < O(logk)|S*|, where S* is an
optimal solution. This result follows from the analysis by
Wolsey (1982) (Thm. 1) adapted to our setting. To get a
better intuition for the formulation (6) we list some special
cases:

Min-cost cover. With ¢ = 1 and g(a) = a being the iden-
tity, Problem 6 becomes a min-cost cover problem. Such
straightforward covering formulations have been used for
filtering after running a detector (Barinova et al., 2012).
Maximum relevance. A minimum-cost cover merely fo-
cuses on complementarity of the selected nodes .S, which
may include rare outliers. At the other extreme (¢ large),
we would merely select by the number of neighbors (Doer-
sch et al. (2012) choose one single A/ (b) that way).
Multi-cover. To smoothly move between the two extremes,
one may choose ¢ > 1 and g to be sub-linear. This trades
off representation, relevance, and discriminativeness.

In Figure 2, we visualize top 5 nearest neighbors with pos-
itive labels in the first chosen cluster S; for all 20 classes
on the PASCAL VOC data. Our experiments in Section 6
show the benefits of our framework. Potentially, the results
might improve even further when using the complementary
mode shifts of (Doersch et al., 2013) as a pre-selection step
before covering.

5. Iterative refinement with latent variables

In this section, we review the latent SVM formulation,
and we propose a simple smoothing technique enabling us
to use classical techniques for unconstrained smooth opti-
mization. Figure 3 illustrates our multiple instance learning
analogy for object detection with one-bit labels.

5.1. Review of latent SVM

For a binary classification problem, the latent SVM formu-
lation consists of learning a decision function involving a
maximization step over a discrete set of configurations Z.
Given a data point x in R? that we want to classify, and
some learned model parameters w in R?, we select a la-
bel y in {—1, 41} as follows:

y = sign (Izneag wTo(x, Z)> ; (7

where z is called a “latent variable” chosen among the
set Z. For object detection, Z is typically a set of bound-
ing boxes, and maximizing over Z amounts to finding a
bounding box containing the object. In deformable part
models (Felzenszwalb et al., 2010), the set Z contains all
possible part configurations, each part being associated to a
position in the image. The resulting set Z has exponential
size, but (7) can be solved efficiently with dynamic pro-
gramming techniques for particular choices of ¢.

Learning the model parameters w is more involved than
solving a simple SVM problem. We are given some train-
ing data {(x;,y;)}~, where the vectors x; are in R? and
the scalars y; are binary labels in {1, —1}. Then, the latent
SVM formulation becomes

nin %le\g + C;£ (yi, IzlfleaZXWT¢(Xi7Z)> . ®)
where £ : R X R — R is the hinge loss defined as £(y, §) =
max (0, 1—y{), which encourages the decision function for
each training example to be the same as the corresponding
label. Similarly, other loss functions can be used such as
the logistic or squared hinge loss.

Problem (8) is nonconvex and nonsmooth, making it hard
to tackle. A classical technique to obtain an approximate
solution is to use a difference of convex (DC) program-
ming technique, called concave-convex procedure (Yuille
& Rangarajan, 2003; Yu & Joachims, 2009). We re-
mark that the part of (8) corresponding to negative ex-
amples is convex with respect to w. It is indeed easy
to show that each corresponding term can be written as a
pointwise maximum of convex functions, and is thus con-
vex (see Boyd & Vandenberghe, 2004): when y; = —1,
0 (y;, maxzez WTP(X;,2)) = maxgzez L(y;, wTd(x;,X)).
On the other hand, the part corresponding to positive ex-
amples is concave, making the objective (8) suitable to DC
programming. Even though such a procedure does not have
any theoretical guarantee about the quality of the optimiza-
tion, it monotonically decreases the value of the objective
and performs relatively well when the problem is well ini-
tialized (Felzenszwalb et al., 2010).

We propose a smooth formulation of latent SVM, with two
main motives. First, smoothing the objective function of
latent SVM allows the use of efficient second-order op-
timization algorithms such as quasi-Newton (Nocedal &
Wright, 1999) that can leverage curvature information to
speed up convergence. Second, as we show later, smooth-
ing the latent SVM boils down to considering the top-N
configurations in the maximization step in place of the top-
1 configuration in the regular latent SVM. As a result, the
smooth latent SVM training becomes more robust to unre-
liable configurations in the early stages, since a larger set
of plausible configurations is considered at each maximiza-
tion step.

5.2. Smooth formulation of LSVM

In the objective (8), the hinge loss can be easily replaced by
a smooth alternative, e.g., squared hinge, or logistic loss.
However, the non-smooth points induced by the following
functions are more difficult to handle

fxi (W) = max wTh(x;,2). )
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Figure 2. Visualizations of top 5 nearest neighbor proposal boxes with positive labels in the first cluster, S; for all 20 classes in PASCAL
VOC dataset. From left to right, aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike,
person, plant, sheep, sofa, train, and tvmonitor.

Figure 3. In the refinement stage, we formulate a multiple instance learning bag per image and bag instances correspond to each window
proposals from selective search. Binary bag labels correspond to image-level annotations of whether the target object exists in the image
or not. (Left) ground truth bounding boxes color coded with category labels. green: person, yellow: dog, and magenta: sofa, (Right)
visualization of 100 random subset of window proposals.
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We propose to use a smoothing technique studied by Nes-
terov (2005) for convex functions.

Nesterov’s smoothing technique We only recall here the
simpler form of Nesterov’s results that is relevant for our
purpose. Consider a non-smooth function that can be writ-
ten in the following form:

g(w) := max (Aw,u), (10)

uceA

where u € R™, A isin R™*?_ and A denotes the probabil-
ity simplex, A = {x : >/, x; = 1,z; > 0}. Smoothing
here consists of adding a strongly convex function w in the
maximization problem

gu(W) == max (Aw,u) — %w(u)} . (11)

The resulting function g,, is differentiable for all u > 0,
and its gradient is

Vgu(w) = ATu’(w), (12)

where u*(w) is the unique solution of (11). The parame-
ter 1 controls the amount of smoothing. Clearly, g,,(w) —
g(w) forall w € W as ;r — 0. As Nesterov (2005) shows,
for a given target approximation accuracy e, there is an op-
timal amount of smoothing () that can be derived from a
convex optimization perspective using the strong convexity
parameter of w(-) on A and the (usually unknown) Lips-
chitz constant of g. In the experiments, we shall simply
learn the parameter p from data.

Smoothing the latent SVM We now apply Nesterov’s
smoothing technique to the latent SVM objective function.
As we shall see, the smoothed objective takes a simple
form, which can be efficiently computed in the latent SVM
framework. Furthermore, smoothing latent SVM implicitly
models uncertainty in the selection of the best configura-
tion z in Z, as shown by Kumar et al. (2012) for a different
smoothing scheme.

In order to smooth the functions fy, defined in (9), we first
notice that

Jx; (W) = max (Ax, W, u), (13)
where Ay, is a matrix of size |Z| x d such that the j-th
row of Ay, is the feature vector ¢(x;, z;) and z; is the j-th
element of Z. Considering any strongly convex function w
and parameter . > 0, the smoothed latent SVM objective
is obtained by replacing in (8)
o the functions fx, by their smoothed counterparts fx, ,
obtained by applying (11) to (13);
o the non-smooth hinge-loss function [ by any smooth loss.

Objective and gradient evaluations An important issue
remains the computational tractability of the new formula-
tion in terms of objective and gradient evaluations, in order
to use quasi-Newton optimization techniques. The choice
of the strongly convex function w is crucial in this respect.

There are two functions known to be strongly convex on the
simplex: i) the Euclidean norm, ii) the entropy. In the case
of the Euclidean-norm w(u) = ||u||3, it turns out that the
smoothed counterpart can be efficiently computed using a
projection on the simplex, as shown below.

2

; (14)
2

1
—Aw —u

u*(w) = arg min
W

ueA

where u*(w) is the solution of (11). Computing Aw re-
quires a priori O(|Z|d) operations. The projection can be
computed in O(| Z]) (see, e.g., Bach et al., 2012). Once u*
is obtained, computing the gradient requires O(d|u*|o)
operations, where ||u*|| is the number of non-zero entries
in u*.

When the set Z is large, these complexities can be im-
proved by leveraging two properties. First, the projection
on the simplex is known to produce sparse solutions, the
smoothing parameter  controlling the sparsity of u*; sec-
ond, the projection preserves the order of the variables. As
a result, the following heuristic can be justified. Assume
that for some N < |Z|, we can obtain the top-N entries of
Aw without exhaustively exploring Z. Then, performing
the projection on these reduced set of IV variables yields a
vector u’ which can be shown to be optimal for the original
problem (14) whenever ||u’||o < N. In other words, when-
ever N is large enough and p small enough, computing the
gradient of f, , can be done in O(NNd) operations. We use
this heuristic in all our experiments.

6. Experiments

We performed two sets of experiments, one on a multiple
instance learning dataset (Andrews et al., 2003) and the
other on the PASCAL VOC 2007 data (Everingham et al.).
The first experiment was designed to compare the multiple
instance learning bag classification performance of LSVM
with Smooth LSVM (SLSVM). The second experiment
evaluates detection accuracy (measured in average preci-
sion) of our framework in comparison to baselines.

6.1. Multiple instance learning datasets

We evaluated our method in Section 5 on standard multi-
ple instance learning datasets (Andrews et al., 2003). For
preprocessing, we centered each feature dimension and {5
normalize the data. For fair comparison with (Andrews
et al., 2003), we use the same initialization, where the ini-
tial weight vector is obtained by training an SVM with all
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Figure 4. Visualization of some common failure cases of constructed positive windows by(Siva et al., 2012) vs our method. Red bounding
boxes are constructed positive windows from (Siva et al., 2012). Green bounding boxes are constructed positive windows from our

method.

Dataset LSVM w/o bias SLSVM w/o bias LSVM w/ bias SLSVM w/ bias

muskl ~ 70.8 £ 14.4 80.3 £10.3 81.7+ 14,5 792+ 134
musk2  51.0 £ 10.9 79.5+104 80.5£9.9 843+ 114
fox 515+75 63.0+:11.8 57.0 £ 8.9 61.0 £ 12.6
elephant 81.5+6.3 88.0 £ 6.7 81.5+4.1 87.0+6.3
tiger 79.5 £ 8.6 855+ 64 86.0 £9.1 875+79
trecl 943+29 955£26 953 +£3.0 953+2.38
trec2 69.0 £ 6.8 83.0£6.5 86.5£5.7 83.8+7.4
trec3 77.5+58 90.0 £5.8 855£63 86.0 £ 6.5
trec4 773+ 8.0 85.0+5.1 853+ 3.6 863 +52
trec? 745 +9.8 83.8£4.0 825£17.0 81.5+5.8
trec9 66.8 = 5.0 703 £5.7 68.8 + 8.0 715+ 64
trec10 71.0+£9.9 84354 80.8 + 6.6 828 +73

Table 1. 10 fold average and standard deviation of the test accuracy on MIL dataset. The two methods start from the same initialization
introduced in (Andrews et al., 2003)

aeroplane bicycle boat bus horse motorbike

Method left right left right left right left right left right left right "AF
(Deselaers et al., 2010) 91 236 334 494 00 00 00 164 96 91 209 161 160
(Pandey & Lazebnik, 2011) 75 21.1 385 448 03 05 00 03 459 173 438 272 20.8
(Deselaers et al., 2012) 53 18.1 486 61.6 00 00 00 164 29.1 141 477 162 214
(Russakovsky et al., 2012) 30.8 25.0 36 26.0 213 29.9 22.8
(Siva et al., 2012) with our features 23.2 15.4 5.1 2.0 6.2 17.4 11.6
Cover + SVM 23.4 435 8.1 33.9 24.7 40.2 29.0
Cover + LSVM 282 472 9.6 347 252 39.8 30.8

Table 2. Detection average precision (%) on PASCAL VOC 2007-6x2 test set. First three baseline methods report results limited to left
and right subcategories of the objects.

VOC2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mAP
(Siva & Xiang, 2011) 13.444.0 3.1 3.1 0.0 31.2439 7.1 0.1 93 99 15 294 383 46 0.1 04 38 342 00 139
Cover + SVM 234435224 8.1 62 33933.830.4 0.1 179 11.517.1 247 402 2.4 14.8 214 15.131.9 6.2 20.3
Cover + LSVM 282472176 9.6 6.5 347355315 0.3 21.7 13.220.7 252 39.8 12.6 18.6 21.2 18.631.710.2 22.2

Cover + SLSVM 27.641.919.7 9.1 10.4 35.839.133.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.135.6 7.1 22.7

Table 3. Detection average precision (%) on full PASCAL VOC 2007 test set.
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the negative instances and bag-averaged positive instances.
For this experiment, we performed 10 fold cross validation
on C and p. Table 1 shows the experimental results. With-
out the bias, our method significantly performs better than
LSVM method and with the bias, our method shows mod-
est improvement in most cases.

6.2. Weakly-supervised object detection

To implement our weakly-supervised detection system we
need suitable image features for computing the nearest
neighbors of each image window in Section 4 and for learn-
ing object detectors. We use the recently proposed R-CNN
(Girshick et al., 2014) detection framework to compute fea-
tures on image windows in both cases. Specifically, we use
the convolutional neural network (CNN) distributed with
DeCAF (Donahue et al., 2014), which is trained on the Im-
ageNet ILSVRC 2012 dataset (using only image-level an-
notations). We avoid using the better performing CNN that
is fine-tuned on PASCAL data, as described in (Girshick
etal., 2014), because fine-tuning requires instance-level an-
notations.

We report detection accuracy as average precision on the
standard benchmark dataset for object detection, PASCAL
VOC 2007 test (Everingham et al.). We compare to five
different baseline methods that learn object detectors with
limited annotations. Note that other baseline methods use
additional information besides the one-bit image-level an-
notations. Deselaers et al. (2010; 2012) use a set of 799 im-
ages with bounding box annotations as meta-training data.
In addition to bounding box annotations, Deselaers et al.
(2010; 2012); Pandey & Lazebnik (2011) use extra instance
level annotations such as pose, difficult and truncated. Siva
et al. (2012); Russakovsky et al. (2012) use difficult in-
stance annotations but not pose or truncated. First, we re-
port the detection average precision on 6 subsets of classes
in table 2 to compare with Deselaers et al. (2010; 2012);
Pandey & Lazebnik (2011).

To evaluate the efficacy of our initialization, we compare it
to the state-of-the-art algorithm recently proposed by (Siva
et al., 2012). Their method constructs a set of positive win-
dows by looping over each positive image and picking the
instance that has the maximum distance to its nearest neigh-
bor over all negative instances (and thus the name negative
data mining algorithm). For a fair comparison, we used the
same window proposals, the same features (Girshick et al.,
2014), the same L2 distance metric, and the same PASCAL
2007 detection evaluation criteria. The class mean average
precision for the mining algorithm was 11.6% compared
to 29.0% obtained by our initialization procedure. Figure
4 visualizes some command failure modes in our imple-
mentation of (Siva et al., 2012). Since the negative min-
ing method does not take into account the similarity among

positive windows (in contrast to our method) our intuition
is that the method is less robust to intra-class variations and
background clutter. Therefore, it often latches onto back-
ground objects (i.e. hurdle in horse images, street signs in
bus images), onto parts of the full objects (i.e. wheels of
bicycles), or merges two different objects (i.e. rider and
motorcycle). It is worth noting that Pandey & Lazebnik
(2011); Siva et al. (2012) use the CorLoc metric! as the
evaluation metric to report results on PASCAL fest set. In
contrast, in our experiments, we exactly follow the PAS-
CAL VOC evaluation protocol (and use the PASCAL VOC
devkit scoring software) and report detection average pre-
cision.

Table 3 shows the detection result on the full PASCAL
2007 dataset. There are two baseline methods (Siva & Xi-
ang, 2011; Russakovsky et al., 2012) which report the result
on the full dataset. Unfortunately, we were not able to ob-
tain the per-class average precision data from the authors
of (Russakovsky et al., 2012) except the class mean aver-
age precision (mAP) of 15.0%. As shown in Table 3, the
initial detector model trained from the constructed set of
positive windows already produces good object detectors
but we can provide further improvement by optimizing the
MIL objective.

7. Conclusion

We developed a framework for learning to localize objects
with one-bit object presence labels. Our results show that
the proposed framework can construct a set of positive win-
dows to train initial detection models and improve the mod-
els with the refinement optimization method. We achieve
state-of-the-art performance for object detection with min-
imal supervision on the standard benchmark object detec-
tion dataset. Source code will be available on the author’s
website.

Acknowledgement

We thank Yong Jae Lee for helpful insights and discussions. H.
Song was supported by Samsung Scholarship Foundation. J.
Mairal and Z. Harchaoui was funded by the INRIA-UC Berke-
ley associated team “Hyperion”, a grant from the France-Berkeley
fund, the Gargantua project under program Mastodons of CNRS,
and the LabEx PERSYVAL-Lab (ANR-11-LABX-0025). This
work was partially supported by ONR N00014-11-1-0688, NSF,
DARPA, and Toyota.

References

Alexe, B., Deselaers, T., and Ferrari, V. Classcut for unsupervised
class segmentation. In ECCV, 2010.

Andrews, S, Tsochantaridis, I, and Hofmann, T. Support vector

!CorLoc was proposed by (Deselaers et al., 2010) to evaluate
the detection results on PASCAL train set



On learning to localize objects with minimal supervision

machines for multiple-instance learning. In NIPS, 2003.

Bach, F, Jenatton, R., Mairal, J., and Obozinski, G. Optimization
with sparsity-inducing penalties. Foundations and Trends in
Machine Learning, 4(1):1-106, 2012.

Barinova, O., Lempitsky, V., and Kohli, P. On detection of mul-
tiple object instances using hough transforms. IEEE TPAMI,
2012.

Boyd, S. P. and Vandenberghe, L. Convex Optimization. Cam-
bridge University Press, 2004.

Chen, X., Shrivastava, A., and and, A. Gupta. Neil: Extracting
visual knowledge from web data. In ICCV, 2013.

Chen, Y., Shioi, H., Montesinos, C. Fuentes, Koh, L. P., Wich, S.,
and Krause, A. Active detection via adaptive submodularity.
In ICML, 2014.

Chum, O. and Zisserman, A. An exemplar model for learning
object classes. In CVPR, 2007.

Crandall, D. and Huttenlocher, D. Weakly supervised learning
of part-based spatial models for visual object recognition. In
ECCV. 2006.

Darrell, T., Sclaroff, S., and Pentland, A. Segmentation by mini-
mal description. In /CCV, 1990.

Deselaers, T., Alex, B., and Ferrari, V. Localizing objects while
learning their appearance. In ECCV, 2010.

Deselaers, T., Alex, B., and Ferrari, V. Weakly supervised local-
ization and learning with generic knowledge. 1JCV, 2012.

Doersch, C., Singh, S., Gupta, A., Sivic, J., and Efros, A. What
makes paris look like paris? In SIGGRAPH, 2012.

Doersch, C., Gupta, A., and Efros, A. Mid-level visual element
discovery as discriminative mode seeking. In NIPS, 2013.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng,
E., and Darrell, T. DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition. In ICML, 2014.

Endres, 1., Shih, K., and Hoeim, D. Learning collections of part
models for object recognition. In CVPR, 2013.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. The PASCAL Visual Object Classes Challenge
2007 (VOC2007) Results.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and
Zisserman, A. The PASCAL Visual Object Classes (VOC)
Challenge. 1JCV, 2010.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ra-
manan, D. Object detection with discriminatively trained part
based models. /EEE TPAMI, 32(9), 2010.

Fergus, R., Perona, P., and Zisserman, A. Weakly supervised
scale-invariant learning of models for visual recognition. IJCV,
2007.

Fukunaga, K. and Hostetler, L. The estimation of the gradient
of a density function, with applications in pattern recognition.
Information Theory, 1975.

Galleguillos, C., Babenko, B., Rabinovich, A., and Belongie, S.
Weakly supervised object localization with stable segmenta-
tions. In ECCV, 2008.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature
hierarchies for accurate object detection and semantic segmen-
tation. In CVPR, 2014.

Joulin, A. and Bach, F. A convex relaxation for weakly supervised
classifiers. In ICML, 2012.

Joulin, A., Bach, F., and Ponce, J. Discriminative clustering for
image co-segmentation. In CVPR, 2010.

Juneja, M., Vedaldi, A., Jawahar, V., and Zisserman, A. Blocks
that shout: Distinctive parts for scene classification. In CVPR,
2013.

Kim, G., Xing, E.P,, Fei-Fei, L., and Kanade, T. Distributed
cosegmentation via submodular optimization on anisotropic
diffusion. In ICCV, 2011.

Kumar, P, Packer, B, and Koller, D. Modeling latent variable
uncertainty for loss-based learning. In /ICML, 2012.

Leibe, B., Leonardis, A., and Schiele, B. Combined object cate-
gorization and segmentation with an implicit chape model. In
ECCVW, 2004.

Li, Y., Tsang, 1., Kwok, J., and Zhou, Z. Convex and scalable
weakly labeled svms. In ICML, 2013.

Long, P.M. and Tan, L. PAC learning axis aligned rectangles with
respect to product distributions from multiple-instance exam-
ples. In Proc. Comp. Learning Theory, 1996.

Micolajezyk, K., Leibe, G., and Schiele, B. Multiple object class
detection with a generative model. In CVPR, 2006.

Nesterov, Y. Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1), 2005.

Nocedal, J. and Wright, S. Numerical Optimization. Springer,
1999.

Pandey, M. and Lazebnik, S. Scene recognition and weakly super-
vised object localization with deformable part-based models.
InICCV, 2011.

Raptis, M., Kokkinos, 1., and Soatto, S. Discovering discrimi-
native action parts from mid-level video representations. In
CVPR, 2012.

Rother, C., Minka, T., Blake, A., and Kolmogorov, V. Cosegmen-
tation of image pairs by histogram matching incorporating a
global constraint into MRFs. In CVPR, 2006.

Russakovsky, O., Lin, Y., Yu, K., and Fei Fei, L. Object-centric
spatial pooling for image classification. In ECCV, 2012.

Singh, S., Gupta, A., and Efros, A. Unsupervised discovery of
mid-level discriminative patches. In ECCV, 2012.

Siva, P. and Xiang, T. Weakly supervised object detector learning
with model drift detection. In /CCV, 2011.

Siva, P,, Russell, C., and Xiang, T. In defence of negative mining
for annotating weakly labelled data. In ECCV, 2012.

Uijlings, J., van de Sande, K., Gevers, T., and Smeulders, A. Se-
lective search for object recognition. In ZJCV, 2013.

Weber, M., Welling, M., and Perona, P. Towards automatic dis-
covery of object categories. In CVPR, 2000a.

Weber, M., Welling, M., and Perona, P. Unsupervised learning of
models for recognition. In ECCV, 2000b.

Wolsey, L. An analysis of the greedy algorithm for the submodu-
lar set covering problem. Combinatorica, 2:385-393, 1982.

Yu, C.N. and Joachims, T. Learning structural svms with latent
variables. In ICML, 2009.

Yuille, A.L. and Rangarajan, A. The concave-convex procedure.
Neural Computation, 15(4):915-936, 2003.



