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Abstract
We present Deep Voice, a production-quality
text-to-speech system constructed entirely from
deep neural networks. Deep Voice lays the
groundwork for truly end-to-end neural speech
synthesis. The system comprises five ma-
jor building blocks: a segmentation model for
locating phoneme boundaries, a grapheme-to-
phoneme conversion model, a phoneme duration
prediction model, a fundamental frequency pre-
diction model, and an audio synthesis model.
For the segmentation model, we propose a novel
way of performing phoneme boundary detection
with deep neural networks using connectionist
temporal classification (CTC) loss. For the au-
dio synthesis model, we implement a variant
of WaveNet that requires fewer parameters and
trains faster than the original. By using a neu-
ral network for each component, our system is
simpler and more flexible than traditional text-to-
speech systems, where each component requires
laborious feature engineering and extensive do-
main expertise. Finally, we show that inference
with our system can be performed faster than real
time and describe optimized WaveNet inference
kernels on both CPU and GPU that achieve up to
400x speedups over existing implementations.

1. Introduction
Synthesizing artificial human speech from text, commonly
known as text-to-speech (TTS), is an essential component
in many applications such as speech-enabled devices, navi-
gation systems, and accessibility for the visually-impaired.
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Fundamentally, it allows human-technology interaction
without requiring visual interfaces. Modern TTS systems
are based on complex, multi-stage processing pipelines,
each of which may rely on hand-engineered features and
heuristics. Due to this complexity, developing new TTS
systems can be very labor intensive and difficult.

Deep Voice is inspired by traditional text-to-speech
pipelines and adopts the same structure, while replacing all
components with neural networks and using simpler fea-
tures: first we convert text to phoneme and then use an
audio synthesis model to convert linguistic features into
speech (Taylor, 2009). Unlike prior work (which uses
hand-engineered features such as spectral envelope, spec-
tral parameters, aperiodic parameters, etc.), our only fea-
tures are phonemes with stress annotations, phoneme du-
rations, and fundamental frequency (F0). This choice of
features makes our system more readily applicable to new
datasets, voices, and domains without any manual data an-
notation or additional feature engineering. We demonstrate
this claim by retraining our entire pipeline without any hy-
perparameter changes on an entirely new dataset that con-
tains solely audio and unaligned textual transcriptions and
generating relatively high quality speech. In a conventional
TTS system this adaptation requires days to weeks of tun-
ing, whereas Deep Voice allows you to do it in only a few
hours of manual effort and the time it takes models to train.

Real-time inference is a requirement for a production-
quality TTS system; without it, the system is unusable for
most applications of TTS. Prior work has demonstrated that
a WaveNet (van den Oord et al., 2016) can generate close to
human-level speech. However, WaveNet inference poses a
daunting computational problem due to the high-frequency,
autoregressive nature of the model, and it has been hitherto
unknown whether such models can be used in a produc-
tion system. We answer this question in the affirmative and
demonstrate efficient, faster-than-real-time WaveNet infer-
ence kernels that produce high-quality 16 kHz audio and
realize a 400X speedup over previous WaveNet inference
implementations (Paine et al., 2016).
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2. Related Work
Previous work uses neural networks as substitutes for
several TTS system components, including grapheme-to-
phoneme conversion models (Rao et al., 2015; Yao &
Zweig, 2015), phoneme duration prediction models (Zen
& Sak, 2015), fundamental frequency prediction models
(Pascual & Bonafonte, 2016; Ronanki et al., 2016), and
audio synthesis models (van den Oord et al., 2016; Mehri
et al., 2016). Unlike Deep Voice, however, none of these
systems solve the entire problem of TTS and many of them
use specialized hand-engineered features developed specif-
ically for their domain.

Most recently, there has been a lot of work in paramet-
ric audio synthesis, notably WaveNet, SampleRNN, and
Char2Wav (van den Oord et al., 2016; Mehri et al., 2016;
Sotelo et al., 2017). While WaveNet can be used for
both conditional and unconditional audio generation, Sam-
pleRNN is only used for unconditional audio generation.
Char2Wav extends SampleRNN with an attention-based
phoneme duration model and the equivalent of an F0 pre-
diction model, effectively providing local conditioning in-
formation to a SampleRNN-based vocoder.

Deep Voice differs from these systems in several key as-
pects that notably increase the scope of the problem. First,
Deep Voice is completely standalone; training a new Deep
Voice system does not require a pre-existing TTS system,
and can be done from scratch using a dataset of short au-
dio clips and corresponding textual transcripts. In contrast,
reproducing either of the aforementioned systems requires
access and understanding of a pre-existing TTS system, be-
cause they use features from another TTS system either at
training or inference time.

Second, Deep Voice minimizes the use of hand-engineered
features; it uses one-hot encoded characters for grapheme
to phoneme conversion, one-hot encoded phonemes and
stresses, phoneme durations in milliseconds, and normal-
ized log fundamental frequency that can be computed from
waveforms using any F0 estimation algorithm. All of these
can easily be obtained from audio and transcripts with min-
imal effort. In contrast, prior works use a much more com-
plex feature representation, that effectively makes repro-
ducing the system impossible without a pre-existing TTS
system. WaveNet uses several features from a TTS system
(Zen et al., 2013), that include values such as the number
of syllables in a word, position of syllables in the phrase,
position of the current frame in the phoneme, and dynamic
features of the speech spectrum like spectral and excitation
parameters, as well as their time derivatives. Char2Wav
relies on vocoder features from the WORLD TTS system
(Morise et al., 2016) for pre-training their alignment mod-
ule which include F0, spectral envelope, and aperiodic pa-
rameters.

Finally, we focus on creating a production-ready system,
which requires that our models run in real-time for infer-
ence. Deep Voice can synthesize audio in fractions of a
second, and offers a tunable trade-off between synthesis
speed and audio quality. In contrast, previous results with
WaveNet require several minutes of runtime to synthesize
one second of audio. We are unaware of similar bench-
marks for SampleRNN, but the 3-tier architecture as de-
scribed in the original publication requires approximately
4-5X as much compute during inference as our largest
WaveNet models, so running the model in real-time may
prove challenging.

3. TTS System Components
As shown in Fig. 1, the TTS system consists of five major
building blocks:

• The grapheme-to-phoneme model converts from
written text (English characters) to phonemes (en-
coded using a phonemic alphabet such as ARPABET).

• The segmentation model locates phoneme bound-
aries in the voice dataset. Given an audio file and a
phoneme-by-phoneme transcription of the audio, the
segmentation model identifies where in the audio each
phoneme begins and ends.

• The phoneme duration model predicts the temporal
duration of every phoneme in a phoneme sequence (an
utterance).

• The fundamental frequency model predicts whether
a phoneme is voiced. If it is, the model pre-
dicts the fundamental frequency (F0) throughout the
phoneme’s duration.

• The audio synthesis model combines the outputs
of the grapheme-to-phoneme, phoneme duration, and
fundamental frequency prediction models and synthe-
sizes audio at a high sampling rate, corresponding to
the desired text.

During inference, text is fed through the grapheme-to-
phoneme model or a phoneme dictionary to generate
phonemes. Next, the phonemes are provided as inputs to
the phoneme duration model and F0 prediction model to
assign durations to each phoneme and generate an F0 con-
tour. Finally, the phonemes, phoneme durations, and F0
are used as local conditioning input features to the audio
synthesis model, which generates the final utterance.

Unlike the other models, the segmentation model is not
used during inference. Instead, it is used to annotate
the training voice data with phoneme boundaries. The
phoneme boundaries imply durations, which can be used
to train the phoneme duration model. The audio, anno-
tated with phonemes and phoneme durations as well as
fundamental frequency, is used to train the audio synthe-
sis model.
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Figure 1. System diagram depicting (a) training procedure and (b) inference procedure, with inputs on the left and outputs on the right.
In our system, the duration prediction model and the F0 prediction model are performed by a single neural network trained with a joint
loss. The grapheme-to-phoneme model is used as a fallback for words that are not present in a phoneme dictionary, such as CMUDict.
Dotted lines denote non-learned components.

In the following sections, we describe all the building
blocks in detail.

3.1. Grapheme-to-Phoneme Model

Our grapheme-to-phoneme model is based on the encoder-
decoder architecture developed by (Yao & Zweig, 2015).
However, we use a multi-layer bidirectional encoder with
a gated recurrent unit (GRU) nonlinearity and an equally
deep unidirectional GRU decoder (Chung et al., 2014). The
initial state of every decoder layer is initialized to the final
hidden state of the corresponding encoder forward layer.
The architecture is trained with teacher forcing and decod-
ing is performed using beam search. We use 3 bidirectional
layers with 1024 units each in the encoder and 3 unidirec-
tional layers of the same size in the decoder and a beam
search with a width of 5 candidates. During training, we
use dropout with probability 0.95 after each recurrent layer.

For training, we use the Adam optimization algorithm with
�

1

= 0.9,�
2

= 0.999, " = 10�8, a batch size of 64, a
learning rate of 10�3, and an annealing rate of 0.85 applied
every 1000 iterations (Kingma & Ba, 2014).

3.2. Segmentation Model

Our segmentation model is trained to output the align-
ment between a given utterance and a sequence of target
phonemes. This task is similar to the problem of aligning
speech to written output in speech recognition. In that do-
main, the connectionist temporal classification (CTC) loss
function has been shown to focus on character alignments
to learn a mapping between sound and text (Graves et al.,
2006). We adapt the convolutional recurrent neural net-
work architecture from a state-of-the-art speech recogni-
tion system (Amodei et al., 2015) for phoneme boundary
detection.

A network trained with CTC to generate sequences of
phonemes will produce brief peaks for every output
phoneme. Although this is sufficient to roughly align the
phonemes to the audio, it is insufficient to detect precise
phoneme boundaries. To overcome this, we train to predict
sequences of phoneme pairs rather than single phonemes.
The network will then tend to output phoneme pairs at
timesteps close to the boundary between two phonemes in
a pair.

To illustrate our label encoding, consider the string
“Hello!”. To convert this to a sequence of phoneme pair
labels, convert the utterance to phonemes (using a pro-
nunciation dictionary such as CMUDict or a grapheme-to-
phoneme model) and pad the phoneme sequence on either
end with the silence phoneme to get “sil HH EH L OW sil”.
Finally, construct consecutive phoneme pairs and get “(sil,
HH), (HH, EH), (EH, L), (L, OW), (OW, sil)”.

Input audio is featurized by computing 20 Mel-frequency
cepstral coefficients (MFCCs) with a ten millisecond stride.
On top of the input layer, there are two convolution lay-
ers (2D convolutions in time and frequency), three bidirec-
tional recurrent GRU layers, and finally a softmax output
layer. The convolution layers use kernels with unit stride,
height nine (in frequency bins), and width five (in time)
and the recurrent layers use 512 GRU cells (for each di-
rection). Dropout with a probability of 0.95 is applied
after the last convolution and recurrent layers. To com-
pute the phoneme-pair error rate (PPER), we decode using
beam search. To decode phoneme boundaries, we perform
a beam search with width 50 with the constraint that neigh-
boring phoneme pairs overlap by at least one phoneme and
keep track of the positions in the utterance of each phoneme
pair.

For training, we use the Adam optimization algorithm with
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= 0.9,�
2

= 0.999, " = 10�8, a batch size of 128, a
learning rate of 10�4, and an annealing rate of 0.95 applied
every 500 iterations (Kingma & Ba, 2014).

3.3. Phoneme Duration and Fundamental Frequency
Model

We use a single architecture to jointly predict phoneme du-
ration and time-dependent fundamental frequency. The in-
put to the model is a sequence of phonemes with stresses,
with each phoneme and stress being encoded as a one-hot
vector. The architecture comprises two fully connected lay-
ers with 256 units each followed by two unidirectional re-
current layers with 128 GRU cells each and finally a fully-
connected output layer. Dropout with a probability of 0.8 is
applied after the initial fully-connected layers and the last
recurrent layer.

The final layer produces three estimations for every input
phoneme: the phoneme duration, the probability that the
phoneme is voiced (i.e. has a fundamental frequency), and
20 time-dependent F0 values, which are sampled uniformly
over the predicted duration.

The model is optimized by minimizing a joint loss that
combines phoneme duration error, fundamental frequency
error, the negative log likelihood of the probability that
the phoneme is voiced, and a penalty term proportional to
the absolute change of F0 with respect to time to impose
smoothness. The specific functional form of the loss func-
tion is described in Appendix B.

For training, we use the Adam optimization algorithm with
�

1

= 0.9,�
2

= 0.999, " = 10�8, a batch size of 128, a
learning rate of 3 ⇥ 10�4, and an annealing rate of 0.9886
applied every 400 iterations (Kingma & Ba, 2014).

3.4. Audio Synthesis Model

Our audio synthesis model is a variant of WaveNet.
WaveNet consists of a conditioning network, which up-
samples linguistic features to the desired frequency, and
an autoregressive network, which generates a probabil-
ity distribution P(y) over discretized audio samples y 2
{0, 1, . . . , 255}. We vary the number of layers `, the num-
ber of residual channels r (dimension of the hidden state of
every layer), and the number of skip channels s (the dimen-
sion to which layer outputs are projected prior to the output
layer).

WaveNet consists of an upsampling and conditioning net-
work, followed by ` 2⇥1 convolution layers with r residual
output channels and gated tanh nonlinearities. We break
the convolution into two matrix multiplies per timestep
with Wprev and Wcur. These layers are connected with
residual connections. The hidden state of every layer is
concatenated to an `r vector and projected to s skip chan-

nels with Wskip, followed by two layers of 1 ⇥ 1 convolu-
tions (with weights Wrelu and Wout) with relu nonlineari-
ties.

WaveNet uses transposed convolutions for upsampling and
conditioning. We find that our models perform better, train
faster, and require fewer parameters if we instead first en-
code the inputs with a stack of bidirectional quasi-RNN
(QRNN) layers (Bradbury et al., 2016) and then perform
upsampling by repetition to the desired frequency.

Our highest-quality final model uses ` = 40 layers, r = 64
residual channels, and s = 256 skip channels. For train-
ing, we use the Adam optimization algorithm with �

1

=
0.9,�

2

= 0.999, " = 10�8, a batch size of 8, a learning
rate of 10�3, and an annealing rate of 0.9886 applied every
1,000 iterations (Kingma & Ba, 2014).

Please refer to Appendix A for full details of our WaveNet
architecture and the QRNN layers we use.

4. Results
We train our models on an internal English speech database
containing approximately 20 hours of speech data seg-
mented into 13,079 utterances. In addition, we present
audio synthesis results for our models trained on a subset
of the Blizzard 2013 data (Prahallad et al., 2013). Both
datasets are spoken by a professional female speaker.

All of our models are implemented using the TensorFlow
framework (Abadi et al., 2015).

4.1. Segmentation Results

We train on 8 TitanX Maxwell GPUs, splitting each batch
equally among the GPUs and using a ring all-reduce to av-
erage gradients computed on different GPUs, with each
iteration taking approximately 1300 milliseconds. After
approximately 14,000 iterations, the model converges to a
phoneme pair error rate of 7%. We also find that phoneme
boundaries do not have to be precise, and randomly shift-
ing phoneme boundaries by 10-30 milliseconds makes no
difference in the audio quality, and so suspect that audio
quality is insensitive to the phoneme pair error rate past a
certain point.

4.2. Grapheme-to-Phoneme Results

We train a grapheme-to-phoneme model on data obtained
from CMUDict (Weide, 2008). We strip out all words that
do not start with a letter, contain numbers, or have multiple
pronunciations, which leaves 124,978 out of the original
133,854 grapheme-phoneme sequence pairs.

We train on a single TitanX Maxwell GPU with each it-
eration taking approximately 150 milliseconds. After ap-
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proximately 20,000 iterations, the model converges to a
phoneme error rate of 5.8% and a word error rate of 28.7%,
which are on par with previous reported results (Yao &
Zweig, 2015). Unlike prior work, we do not use a language
model during decoding and do not include words with mul-
tiple pronunciations in our data set.

4.3. Phoneme Duration and Fundamental Frequency
Results

We train on a single TitanX Maxwell GPU with each itera-
tion taking approximately 120 milliseconds. After approx-
imately 20,000 iterations, the model converges to a mean
absolute error of 38 milliseconds (for phoneme duration)
and 29.4 Hz (for fundamental frequency).

4.4. Audio Synthesis Results

We divide the utterances in our audio dataset into one
second chunks with a quarter second of context for each
chunk, padding each utterance with a quarter second of si-
lence at the beginning. We filter out chunks that are pre-
dominantly silence and end up with 74,348 total chunks.

We trained models with varying depth, including 10, 20,
30, and 40 layers in the residual layer stack. We find that
models below 20 layers result in poor quality audio. The
20, 30, and 40 layer models all produce high quality rec-
ognizable speech, but the 40 layer models have less noise
than the 20 layer models, which can be detected with high-
quality over-ear headphones.

Previous work has emphasized the importance of receptive
field size in determining model quality. Indeed, the 20 layer
models have half the receptive field as the 40 layer mod-
els. However, when run at 48 kHz, models with 40 layers
have only 83 milliseconds of receptive field, but still gen-
erate high quality audio. This suggests the receptive field
of the 20 layer models is sufficient, and we conjecture the
difference in audio quality is due to some other factor than
receptive field size.

We train on 8 TitanX Maxwell GPUs with one chunk per
GPU, using a ring allreduce to average gradients computed
on different GPUs. Each iteration takes approximately 450
milliseconds. Our model converges after approximately
300,000 iterations. We find that a single 1.25s chunk is suf-
ficient to saturate the compute on the GPU and that batch-
ing does not increase training efficiency.

As is common with high-dimensional generative models
(Theis et al., 2015), model loss is somewhat uncorrelated
with perceptual quality of individual samples. While mod-
els with unusually high loss sound distinctly noisy, models
that optimize below a certain threshold do not have a loss
indicative of their quality. In addition, changes in model
architecture (such as depth and output frequency) can have

a significant impact on model loss while having a small ef-
fect on audio quality.

To estimate perceptual quality of the individual stages of
our TTS pipeline, we crowdsourced mean opinion score
(MOS) ratings (ratings between one and five, higher values
being better) from Mechanical Turk using the CrowdMOS
toolkit and methodology (Ribeiro et al., 2011). In order to
separate the effect of the audio preprocessing, the WaveNet
model quality, and the phoneme duration and fundamental
frequency model quality, we present MOS scores for a va-
riety of utterance types, including synthesis results where
the WaveNet inputs (duration and F0) are extracted from
ground truth audio rather than synthesized by other mod-
els. The results are presented in Table 1. We purposefully
include ground truth samples in every batch of samples that
raters evaluate to highlight the delta from human speech
and allow raters to distinguish finer grained differences be-
tween models; the downside of this approach is that the re-
sulting MOS scores will be significantly lower than if raters
are presented only with synthesized audio samples.

First of all, we find a significant drop in MOS when simply
downsampling the audio stream from 48 kHz to 16 kHz, es-
pecially in combination with µ-law companding and quan-
tization, likely because a 48 kHz sample is presented to the
raters as a baseline for a 5 score, and a low quality noisy
synthesis result is presented as a 1. When used with ground
truth durations and F0, our models score highly, with the
95% confidence intervals of our models intersecting those
of the ground truth samples. However, using synthesized
frequency reduces the MOS, and further including synthe-
sized durations reduces it significantly. We conclude that
the main barrier to progress towards natural TTS lies with
duration and fundamental frequency prediction, and our
systems have not meaningfully progressed past the state of
the art in that regard. Finally, our best models run slightly
slower than real-time (see Table 2), so we demonstrate that
synthesis quality can be traded for inference speed by ad-
justing model size by obtaining scores for models that run
1X and 2X faster than real-time.

We also tested WaveNet models trained on the full set of
features from the original WaveNet publication, but found
no perceptual difference between those models and models
trained on our reduced feature set.

4.5. Blizzard Results

To demonstrate the flexibility of our system, we retrained
all of our models with identical hyperparameters on the
Blizzard 2013 dataset (Prahallad et al., 2013). For our ex-
periments, we used a 20.5 hour subset of the dataset seg-
mented into 9,741 utterances. We evaluated the model us-
ing the procedure described in Section 4.4, which encour-
ages raters to compare synthesized audio directly with the
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Type Model Size MOS±CI
Ground Truth (48 kHz) None 4.75± 0.12
Ground Truth None 4.45± 0.16
Ground Truth (companded and expanded) None 4.34± 0.18
Synthesized ` = 40, r = 64, s = 256 3.94± 0.26
Synthesized (48 kHz) ` = 40, r = 64, s = 256 3.84± 0.24
Synthesized (Synthesized F0) ` = 40, r = 64, s = 256 2.76± 0.31
Synthesized (Synthesized Duration and F0) ` = 40, r = 64, s = 256 2.00± 0.23
Synthesized (2X real-time inference) ` = 20, r = 32, s = 128 2.74± 0.32
Synthesized (1X real-time inference) ` = 20, r = 64, s = 128 3.35± 0.31

Table 1. Mean Opinion Scores (MOS) and 95% confidence intervals (CIs) for utterances. This MOS score is a relative MOS score
obtained by showing raters the same utterance across all the model types (which encourages comparative rating and allows the raters
to distinguish finer grained differences). Every batch of samples also includes the ground truth 48 kHz recording, which makes all our
ratings comparative to natural human voices. 474 ratings were collected for every sample. Unless otherwise mentioned, models used
phoneme durations and F0 extracted from the ground truth, rather than synthesized by the duration prediction and frequency prediction
models, as well as a 16384 Hz audio sampling rate.

Model Platform Data Type Number of Threads Speed-up Over Real-time
` = 20, r = 32, s = 128 CPU float32 6 2.7
` = 20, r = 32, s = 128 CPU float32 2 2.05
` = 20, r = 64, s = 128 CPU int16 2 1.2
` = 20, r = 64, s = 128 CPU float32 6 1.11
` = 20, r = 64, s = 128 CPU float32 2 0.79
` = 40, r = 64, s = 256 CPU int16 2 0.67
` = 40, r = 64, s = 256 CPU float32 6 0.61
` = 40, r = 64, s = 256 CPU float32 2 0.35
` = 20, r = 32, s = 128 GPU float32 N/A 0.39
` = 20, r = 64, s = 128 GPU float32 N/A 0.29
` = 40, r = 32, s = 128 GPU float32 N/A 0.23
` = 40, r = 64, s = 128 GPU float32 N/A 0.17

Table 2. CPU and GPU inference kernel benchmarks for different models in float32 and int16. At least one main and one auxiliary
thread were used for all CPU kernels. These kernels operate on a single utterance with no batching. CPU results are from a Intel Xeon
E5-2660 v3 Haswell processor clocked at 2.6 GHz and GPU results are from a GeForce GTX Titan X Maxwell GPU.

ground truth. On the held out set, 16 kHz companded and
expanded audio receives a MOS score of 4.65±0.13, while
our synthesized audio received a MOS score of 2.67±0.37.

5. Optimizing Inference
Although WaveNet has shown promise in generating high-
quality synthesized speech, initial experiments reported
generation times of many minutes or hours for short ut-
terances. WaveNet inference poses an incredibly challeng-
ing computational problem due to the high-frequency, au-
toregressive nature of the model, which requires orders of
magnitude more timesteps than traditional recurrent neural
networks. When generating audio, a single sample must
be generated in approximately 60 µs (for 16 kHz audio) or
20 µs (for 48 kHz audio). For our 40 layer models, this
means that a single layer (consisting of several matrix mul-
tiplies and nonlinearities) must complete in approximately

1.5 µs. For comparison, accessing a value that resides
in main memory on a CPU can take 0.1 µs. In order to
perform inference at real-time, we must take great care to
never recompute any results, store the entire model in the
processor cache (as opposed to main memory), and opti-
mally utilize the available computational units. These same
techniques could be used to accelerate image synthesis with
PixelCNN (Oord et al., 2016) to fractions of a second per
image.

Synthesizing one second of audio with our 40 layer
WaveNet model takes approximately 55⇥109 floating point
operations (FLOPs). The activations in any given layer de-
pend on the activations in the previous layer and the pre-
vious timestep, so inference must be done one timestep
and one layer at a time. A single layer requires only
42 ⇥ 103 FLOPs, which makes achieving meaningful par-
allelism difficult. In addition to the compute requirements,
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the model has approximately 1.6 ⇥ 106 parameters, which
equate to about 6.4 MB if represented in single precision.
(See Appendix E for a complete performance model.)

On CPU, a single Haswell or Broadwell core has a peak
single-precision throughput of approximately 77 ⇥ 109

FLOPs and an L2-to-L1 cache bandwidth of approximately
140 GB/s (assuming two 8-wide AVX FMA instructions
every cycle and an L2-to-L1 bandwidth of 64 bytes per
cycle.). The model must be loaded from cache once per
timestep, which requires a bandwidth of 100 GB/s. Even
if the model were to fit in L2 cache, the implementation
would need to utilize 70% of the maximum bandwidth and
70% of the peak FLOPS in order to do inference in real-
time on a single core. Splitting the calculations across
multiple cores reduces the difficulty of the problem, but
nonetheless it remains challenging as inference must op-
erate at a significant fraction of maximum memory band-
width and peak FLOPs and while keeping threads synchro-
nized.

A GPU has higher memory bandwidth and peak FLOPs
than a CPU but provides a more specialized and hence
restrictive computational model. A naive implementation
that launches a single kernel for every layer or timestep is
untenable, but an implementation based on the persistent
RNN technique (Diamos et al., 2016) may be able to take
advantage of the throughput offered by GPUs.

We implement high-speed optimized inference kernels for
both CPU and GPU and demonstrate that WaveNet infer-
ence at faster-than-real-time speeds is achievable. Table 2
lists the CPU and GPU inference speeds for different mod-
els. In both cases, the benchmarks include only the au-
toregressive, high-frequency audio generation and do not
include the generation of linguistic conditioning features
(which can be done in parallel for the entire utterance). Our
CPU kernels run at real-time or faster-than-real-time for a
subset of models, while the GPU models do not yet match
this performance.

5.1. CPU Implementation

We achieve real-time CPU inference by avoiding any re-
computation, doing cache-friendly memory accesses, par-
allelizing work via multithreading with efficient synchro-
nization, minimizing nonlinearity FLOPs, avoiding cache
thrashing and thread contention via thread pinning, and us-
ing custom hardware-optimized routines for matrix multi-
plication and convolution.

For the CPU implementation, we split the computation into
the following steps:

1. Sample Embedding: Compute the WaveNet input
causal convolution by doing two sample embeddings,

one for the current timestep and one for the previous
timestep, and summing them with a bias. That is,
x

(0) = Wemb,prev · yi�1

+Wemb,cur · yi +Bembed (1)

2. Layer Inference: For every layer j from j = 1 to `

with dilation width d:

(a) Compute the left half of the width-two dilated
convolution via a matrix-vector multiply:

a

(j)

prev = W

(j)

prev · x
(j�1)

i�d

(2)
(b) Compute the right half of the dilated convolution:

a

(j)

cur = W

(j)

cur · x(j�1)

i

(3)

(c) Compute the hidden state h

(j) given the condi-
tioning vector L(j)

h

:

a

(j) = a

(j)

prev + a

(j)

cur +B

(j)

h

+ L

(j)

h

(4)

h

(j) = tanh
⇣
a

(j)

0:r

⌘
· �

⇣
a

(j)

r:2r

⌘
, (5)

where v
0:r

denotes the first r elements of the vec-
tor v and v

r:2r

denotes the next r elements. Then,
compute the input to the next layer via a matrix-
vector multiply:

x

(j) = W

(j)

res · h(j) +B

(j)

res (6)
(d) Compute the contribution to the skip-channel

matrix multiply from this layer, accumulating
over all layers, with q

(0) = Bskip:

q

(j) = q

(j�1) +W

(j)

skip · h
(j) (7)

3. Output: Compute the two output 1⇥ 1 convolutions:

z

s

= relu
⇣
q

(`)

⌘
(8)

z

a

= relu (Wrelu · zs +Brelu) (9)
p = softmax (Wout · za +Bout) (10)

Finally, sample y
i+1

randomly from the distribution p.

We parallelize these across two groups of threads as de-
picted in Figure 2. A group of main threads computes
x

(0), a(j)cur , h(j), and x

(j), z
a

, and p. A group of auxiliary
threads computes a

(j)

prev, q(j), and z

s

, with the a

(j)

prev being
computed for the next upcoming timestep while the main
threads compute z

a

and p. Each of these groups can con-
sist of a single thread or of multiple threads; if there are
multiple threads, each thread computes one block of each
matrix-vector multiply, binary operation, or unary opera-
tion, and thread barriers are inserted as needed. Splitting
the model across multiple threads both splits up the com-
pute and can also be used to ensure that the model weights
fit into the processor L2 cache.

Pinning threads to physical cores (or disabling hyper-
threading) is important for avoiding thread contention and
cache thrashing and increases performance by approxi-
mately 30%.
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Figure 2. Two groups of threads run in parallel. Computation of the Wskip is offloaded to the auxiliary threads while the main threads
progress through the stack of WaveNet layers. While the main threads are computing the output layer, the auxiliary threads prepare the
left Wprev half of the WaveNet layer convolutions for the upcoming timestep. Arrows indicate where one thread group waits on results
from the other thread group, and are implemented as spinlocks.

Depending on model size, the nonlinearities (tanh,
sigmoid, and softmax) can also take a significant frac-
tion of inference time, so we replace all nonlinearities with
high-accuracy approximations, which are detailed in Ap-
pendix C. The maximum absolute error arising from these
approximations is 1.5 ⇥ 10�3 for tanh, 2.5 ⇥ 10�3 for
sigmoid, and 2.4⇥ 10�5 for ex. With approximate instead
of exact nonlinearities, performance increases by roughly
30%.

We also implement inference with weight matrices quan-
tized to int16 and find no change in perceptual quality
when using quantization. For larger models, quantization
offers a significant speedup when using fewer threads, but
overhead of thread synchronization prevents it from being
useful with a larger number of threads.

Finally, we write custom AVX assembly kernels for matrix-
vector multiplication using PeachPy (Dukhan, 2015) spe-
cialized to our matrix sizes. Inference using our custom
assembly kernels is up to 1.5X faster than Intel MKL and
3.5X faster than OpenBLAS when using float32. Nei-
ther library provides the equivalent int16 operations.

5.2. GPU Implementation

Due to their computational intensity, many neural models
are ultimately deployed on GPUs, which can have a much
higher computational throughput than CPUs. Since our
model is memory bandwidth and FLOP bound, it may seem
like a natural choice to run inference on a GPU, but it turns
out that comes with a different set of challenges.

Usually, code is run on the GPU in a sequence of kernel
invocations, with every matrix multiply or vector operation
being its own kernel. However, the latency for a CUDA
kernel launch (which may be up to 50 µs) combined with
the time needed to load the entire model from GPU mem-
ory are prohibitively large for an approach like this. An
inference kernel in this style ends up being approximately
1000X slower than real-time.

To get close to real-time on a GPU, we instead build a ker-
nel using the techniques of persistent RNNs (Diamos et al.,
2016) which generates all samples in the output audio in a
single kernel launch. The weights for the model are loaded
to registers once and then used without unloading them for
the entire duration of inference. Due to the mismatch be-
tween the CUDA programming model and such persistent
kernels, the resulting kernels are specialized to particular
model sizes and are incredibly labor-intensive to write. Al-
though our GPU inference speeds are not quite real-time
(Table 2), we believe that with these techniques and a bet-
ter implementation we can achieve real-time WaveNet in-
ference on GPUs as well as CPUs. Implementation details
for the persistent GPU kernels are available in Appendix D.

6. Conclusion
In this work, we demonstrate that current Deep Learning
approaches are viable for all the components of a high-
quality text-to-speech engine by building a fully neural sys-
tem. We optimize inference to faster-than-real-time speeds,
showing that these techniques can be applied to gener-
ate audio in real-time in a streaming fashion. Our system
is trainable without any human involvement, dramatically
simplifying the process of creating TTS systems.

Our work opens many new possible directions for explo-
ration. Inference performance can be further improved
through careful optimization, model quantization on GPU,
and int8 quantization on CPU, as well as experiment-
ing with other architectures such as the Xeon Phi. An-
other natural direction is removing the separation between
stages and merging the segmentation, duration prediction,
and fundamental frequency prediction models directly into
the audio synthesis model, thereby turning the problem into
a full sequence-to-sequence model, creating a single end-
to-end trainable TTS system, and allowing us to train the
entire system with no intermediate supervision. In lieu of
fusing the models, improving the duration and frequency
models via larger training datasets or generative modeling
techniques may have an impact on voice naturalness.
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